Pathology of CNS Tumors, part II

Dr: Ahmed Roshdi; PhD/MD Professor of Pathology, Sohag University 12 Jan 2023

By end of this lecture; you have to:

- ☐ Identify different types of gliomas and describe pathological features.
- ☐ Describe main characters of medulloblastoma.
- ☐ Identify origin, types and morphology of meningioma.
- ☐ Describe causes and effects of high intracranial tension

Normal cells of CNS

A.Neuroglial cells

- 1. Astrocytes Star-shaped
 - Responsible for nutritional supply and insulation of neurons
- 2.Oligodendrocytes Form myelin sheath
- **3.Ependymal cells** Line ventricular chambers, aqueduct, central canal of spinal cord
- 4. Microglia Native macrophages of the CNS

B.Neuronal cells

C.Meningeal cells

D.Endothelial cells

WHO classification of CNS tumors

Diffuse astrocytic and oligodendroglial tumours

Diffuse astrocytoma, IDH-mutant Gemistocytic astrocytoma, IDH-mutant Diffuse astrocytoma, IDH-wildtype Diffuse astrocytoma, NOS

Anaplastic astrocytoma, IDH-mutant Anaplastic astrocytoma, IDH-wildtype Anaplastic astrocytoma, NOS

Glioblastoma, IDH-wildtype Giant cell glioblastoma Gliosarcoma Epithelioid glioblastoma Glioblastoma, IDH-mutant Glioblastoma, NOS

Diffuse midline glioma, H3 K27M-mutant

Oligodendroglioma, IDH-mutant and 1p/19q-codeleted Oligodendroglioma, NOS

Anaplastic oligodendroglioma, IDH-mutant and 1p/19q-codeleted Anaplastic oligodendroglioma, NOS

Oligoastrocytoma, NOS Anaplastic oligoastrocytoma, NOS

Other astrocytic tumours

Pilocytic astrocytoma
Pilomyxoid astrocytoma
Subependymal giant cell astrocytoma
Pleomorphic xanthoastrocytoma
Anaplastic pleomorphic xanthoastrocytoma

Ependymal tumours

Subependymoma
Myxopapillary ependymoma
Ependymoma
Papillary ependymoma
Clear cell ependymoma

Tanycytic ependymoma Ependymoma, RELA fusion-positive Anaplastic ependymoma

Other gliomas

Chordoid glioma of the third ventricle Angiocentric glioma Astroblastoma

Choroid plexus tumours

Choroid plexus papilloma Atypical choroid plexus papilloma Choroid plexus carcinoma

WHO classification of CNS tumors

Neuronal and mixed neuronal-glial tumours

Dysembryoplastic neuroepithelial tumour

Gangliocytoma

Ganglioglioma

Anaplastic ganglioglioma

Dysplastic cerebellar gangliocytoma

(Lhermitte-Duclos disease)

Desmoplastic infantile astrocytoma and ganglioglioma

Papillary glioneuronal tumour

Rosette-forming glioneuronal tumour

Diffuse leptomeningeal glioneuronal tumour

Central neurocytoma

Extraventricular neurocytoma

Cerebellar liponeurocytoma

Paraganglioma

Tumours of the pineal region

Pineocytoma

Pineal parenchymal tumour of intermediate differentiation

Pineoblastoma.

Papillary tumour of the pineal region

Embryonal tumours

Medulloblastomas, genetically defined

Medulloblastoma, WNT-activated

Medulloblastoma, SHH-activated and TP53-mutant

Medulloblastoma, SHH-activated and TP53-wildtype

Medulloblastoma, non-WNT/non-SHH Medulloblastoma, group 3

Medulloblastoma, group 4

Medulloblastomas, histologically defined

Medulloblastoma, classic

Medulloblastoma, desmoplastic/nodular

Medulloblastoma with extensive nodularity

Medullobiastoma, large cell / anaplastic

Medulloblastoma, NOS

Embryonal tumour with multilayered rosettes,

C19MC-altered

Embryonal tumour with multilayered rosettes, NOS

Medulloepithelioma

CNS neuroblastoma

CNS ganglioneuroblastoma

CNS embryonal tumour, NOS

Atypical teratoid/rhabdoid tumour

CNS embryonal tumour with rhabdoid features

Tumours of the cranial and paraspinal nerves

Schwannoma

Cellular schwannoma

Plexiform schwannoma

Common CNS tumors

Tumors of neuroglia (GLIOMAS)

- Astrocytoma.
- Glioblastoma multiforme.
- Oligodendroglioma.
- Ependymoma.

Choroid plexus tumors

- Choroid plexus papilloma.
- Choroid plexus carcinoma.

Tumors of primitive undifferentiated cells

Medulloblastoma

Tumors of meninges

• Meningioma.

Metastatic tumours

Astrocytoma

- Tumors arising from astrocytes
- Types
 - 1. Pilocytic astrocytoma (WHO Grade I)
 - 2. Fibrillary astrocytoma (WHO Grade II)
 - 3. Anaplastic astrocytoma (WHO Grade III)
- Clinically:
 - Seizures (convulsions)
 - Symptoms of ICT (Headache, vomiting, blurred vision)
 - Focal neurological deficit

Astrocytoma

A. Pilocytic astrocytoma (WHO Grade I):

- Typically occurs in children and young adults.
- The common site is the cerebellum.
- Slowly growing and rarely infiltrative.
- **Grossly**: well-circumscribed, often cystic tumor with a mural nodule attach to cyst wall.
- <u>Microscopically</u>: tumor consists of bipolar cells with long, thin processes (hair cell) with no features of malignancy

Astrocytoma

A. Pilocytic astrocytoma (WHO Grade I):

Bipolar cells with long, thin processes (hair cell)

Astrocytoma

A. Diffuse or fibrillary astrocytoma (WHO Grade II):

- Represent about 2/3 of young adult brain tumors.
- Common site is cerebral hemispheres in adults and brain stem in children.
- <u>Grossly</u>: poorly defined, diffuse growth, gray white, infiltrative, expand and distort the brain tissue
- Microscopically:
 - Histologically benign
 - Astrocytic cell proliferation in a fibrillary stroma.
 - The nuclei are pleomorphic and hyperchromatic.
 - No mitotic figures.

Astrocytoma

A. Diffuse or fibrillary astrocytoma (WHO Grade II):

Fibrillary stroma with slightly pleomorphic and hyperchromatic cells

Astrocytoma

A. Anaplastic astrocytoma (WHO Grade III):

- An Aggressive tumor
- Commonly affects adults
- Site: cerebral hemispheres.
- Microscopically:
 - high cellularity
 - nuclear anaplasia (tumor giant cells)
 - mitotic activity.
 - NO necrosis

Astrocytoma

A. Anaplastic astrocytoma (WHO Grade III):

Cellular tumor with nuclear anaplasia and tumor giant cells

Glioblastoma multiform (GBM); WHO grade IV

- The most aggressive malignant glial tumors.
- Commonly affects adult
- Site: cerebral hemispheres.
- *Grossly*: solitary, butterfly with foci of hemorrhage, necrosis and cyst formation.
- · Microscopically:
 - Highly cellular tumor, with prominent nuclear anaplasia, high mitotic activity and tumor giant cells.
 - Proliferation of small vascular spaces (micro-vascular proliferation)
 - Palisade necrosis: tumor cells arrange around areas of necrosis

Glioblastoma multiform (GBM); WHO grade IV

Palisade necrosis

Highly cellularity with nuclear anaplasia and tumor giant cells

	Pilocytic astrocytoma	Fibrillary astrocytoma	Anaplastic astrocytoma	Glioblastoma multiformis
Site	Cerebellum	Cerebral hemisphere sand brain stem	Cerebral hemisphere	Cerebral hemisphere and basal ganglia
Age	Children and young adults	Children and young adults	Adults	Adults
GP	-Well defined nodule -May be cystic	-Poorly-defined -Infiltrative -Gray white	-Poorly-defined -Infiltrative -Gray white	-Poorly-defined -Infiltrative -Soft and firm areas -Hge and necrosis
MP	-Bipolar cells -With thin long processes -No mitosis	-Bipolar cells -Fibrillary stroma -Pleomorphic cells -No mitosis	-High cellularity -Pleomorphism -Mitosis	-High cellularity -Pleomorphism -Frequent mitosis -Giant cells -Palisade necrosis -Micro-vessel proliferation

Oligodendroglioma

- A rare slowly growing tumor (WHO II)
- Frequent cystic changes and calcification.

Microscopically:

- Sheets of rounded or polygonal cells with small rounded nuclei
- Characterized by peri-nuclear pale halo.
- Scanty stroma with numerous thin walled blood vessels.
- Anaplastic oligodendroglioma (WHO III) shows increased cellularity, mitosis and nuclear atypia

Oligodendroglioma

Polygonal cells with rounded nuclei surrounded by peri-nuclear halo

Ependymoma

- Arises from ependymal cell lining of ventricles and spinal canal.
- Affects children and young adult
- Associated with hydrocephalus
- Grossly: gray fleshy mass.
- Microscopically
 - · Cellular tumor.
 - Tumor cells have regular round to oval nuclei with granular cytoplasm.
 - Cytoplasmic processes of tumor cells condense around blood vessels to form pseudo-rosettes, or around central lumen to form rosettes (diagnostic).

Ependymoma

Tumor cells condense around blood vessels (pseudo-rosettes)

Tumors of primitive cells

Medulloblastoma

- One of primitive tumors (blastomas) that affect children
- Rapidly growing malignant neoplasm (WHO grade IV)
- Site: commonly cerebellum

• Grossly:

- Fleshy grayish pink mass projecting into lumen of fourth ventricle and obstructing the pathway of the C.S.F.
- The tumor disseminates through the CSF.
- Cut surface shows hemorrhage and necrosis.

Microscopically:

- Cellular tumor
- Formed of small round cells with scanty cytoplasm and small central hyperchromatic nuclei.
- Frequent mitosis
- Tumors cells show focal pseudo-rosettes around blood vessels

Tumors of primitive cells

Medulloblastoma

Small round cells with scanty cytoplasm, hyperchromatic nculei and frequent mitosis

Focal pseudo-rosette formation

Tumors of meninges

Meningioma

- Origin: arise from the meningothelial cell lining of meninges
- Behaviour: commonly benign tumor, but can be malignant
- **Age**: The tumor occurs in adults.
- <u>Site</u>: Any site but commonly in relation to superior sagittal sinus or at base of brain.

Gross Picture:

- Variable sized round or oval capsulated tumor attached to under surface of the dura.
- Firm in consistency.
- Cut surface is grey white and shows whorly appearance.

Tumors of meninges

Meningioma

- Microscopic Picture:
 - Groups of large round or oval cells separated by variable amount of stroma
 - The cells arrange concentrically in whorls (diagnostic)
 - The cells have indistinct cell borders, eosinophilic cytoplasm and small round or oval nuclei.....syncytial appearance
 - The central cells undergo hyalinosis and calcification, psammoma bodies (diagnostic).
 - Microscopic variants:

1-Psammomatous

3-Meningiothelial

5-Angiomatous

2-Fibroblastic

4-Papillary

6-Metaplastic

Tumors of meninges

Meningioma

Syncytial tumor cells arrange in whorls with central hyalinized cells and calcification (psammoma bodies)

Increased intracranial tension

Aetiology

- Intracranial tumours (mention)
- Intracranial inflammation:
 - Acute: -Suppurative: as septic meningitis
 -Non-suppurative: as viral meningitis
 - Chronic: -Non-specific: as chronic abscess-Specific: as TB, Gumma of syphilis
- Intracranial vascular disorders (mention)
- Hydrocephalus

Symptoms:

- > Persistent headache
- Vomiting
- ➤ Blurred vision

Increased intracranial tension

Effects

- 1. Flattened brain convolution on same side of the lesion
- 2. Shift of midline structures to opposite side
- 3. Papillaedema: due to compression of retinal veins at subarachenoid space
- 4. Skull changes: as thining of skull bone over the lesion (in chronic cases)
- 5. Intracranial herniation:

Increased intracranial tension

Effects

Tentorial herniation:

- Herniation of the cerebrum through tentorium cerebelli
- Occurs when the space occupying lesion is located above tentorium cerebelli
- Effects:
- a. Compression of midbrain and aquiduct of Sylvious

 Hydrocephalus
- b. Compression of 4th and 6th cranial nerves —> distorted eye movement
- c. Compression of posterior cerebral artery —> posterior cerebral infarction

Tonsillar herniation:

- Herniation of the brain stem through foramen magnum
 - Compression of medulla oblongata compression compression compression

Good luck

Dr Ahmed Roshdi